Toán 9 Kết nối tri thức 1: Luyện tập chung trang 53

Home » Lớp 9 » Toán lớp 9 » Toán 9 Kết nối tri thức 1: Luyện tập chung trang 53

Luyện tập chung trang 53 của sách giáo khoa Toán 9 Kết nối tri thức cung cấp một loạt các bài tập luyện thực hành nhằm giúp học sinh củng cố và sâu sắc hóa kiến thức đã học. Trong bài viết này, chúng ta sẽ phân tích từng bài tập, cung cấp lời giải chi tiết và các mẹo hữu ích để giải quyết chúng một cách hiệu quả. Đây là cơ hội tuyệt vời để các em học sinh nâng cao kỹ năng giải toán và chuẩn bị tốt nhất cho các kỳ thi sắp tới.

Giải bài luyện tập chung trang 53

Bài 3.12 toán 9 sgk KNTT trang 53

Rút gọn các biểu thức sau:

a) \( \sqrt{\left( \sqrt{3} – \sqrt{2} \right)^2} + \sqrt{\left( 1 – \sqrt{2} \right)^2} \)

b) \( \sqrt{\left( \sqrt{7} – 3 \right)^2} + \sqrt{\left( \sqrt{7} + 3 \right)^2} \)

Giải:

a) Biểu thức \( \sqrt{\left( \sqrt{3} – \sqrt{2} \right)^2} \) là giá trị tuyệt đối của \( \sqrt{3} – \sqrt{2} \), nên ta có:
\[
\sqrt{\left( \sqrt{3} – \sqrt{2} \right)^2} = \left| \sqrt{3} – \sqrt{2} \right|.
\]
Tương tự:
\[
\sqrt{\left( 1 – \sqrt{2} \right)^2} = \left| 1 – \sqrt{2} \right|.
\]
Vì vậy, biểu thức ban đầu trở thành:
\[
\left| \sqrt{3} – \sqrt{2} \right| + \left| 1 – \sqrt{2} \right|.
\]

b) Biểu thức \( \sqrt{\left( \sqrt{7} – 3 \right)^2} \) là giá trị tuyệt đối của \( \sqrt{7} – 3 \), nên ta có:
\[
\sqrt{\left( \sqrt{7} – 3 \right)^2} = \left| \sqrt{7} – 3 \right|.
\]
Tương tự:
\[
\sqrt{\left( \sqrt{7} + 3 \right)^2} = \left| \sqrt{7} + 3 \right|.
\]
Vì vậy, biểu thức ban đầu trở thành:
\[
\left| \sqrt{7} – 3 \right| + \left| \sqrt{7} + 3 \right|.
\]
Đến đây, chúng ta có thể tính được các giá trị tuyệt đối và rút gọn biểu thức.

Bài 3.13 toán 9 sgk KNTT trang 53

Thực hiện phép tính:

a) \( \sqrt{3} \left( \sqrt{192} – \sqrt{75} \right) \)

b) \( \frac{-3\sqrt{18} + 5\sqrt{50} – \sqrt{128}}{7\sqrt{2}} \)

Giải:

a)
Ta tính từng căn bậc hai trước:
\[
\sqrt{192} = \sqrt{64 \times 3} = 8\sqrt{3},
\]
\[
\sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3}.
\]
Do đó biểu thức trở thành:
\[
\sqrt{3} \left( 8\sqrt{3} – 5\sqrt{3} \right) = \sqrt{3} \times 3\sqrt{3} = 9.
\]

b)
Ta tính từng căn bậc hai trước:
\[
\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2},
\]
\[
\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2},
\]
\[
\sqrt{128} = \sqrt{64 \times 2} = 8\sqrt{2}.
\]
Thay vào biểu thức ban đầu:
\[
\frac{-3\sqrt{18} + 5\sqrt{50} – \sqrt{128}}{7\sqrt{2}} = \frac{-9\sqrt{2} + 25\sqrt{2} – 8\sqrt{2}}{7\sqrt{2}}.
\]
Rút gọn tử số:
\[
-9\sqrt{2} + 25\sqrt{2} – 8\sqrt{2} = 8\sqrt{2}.
\]
Do đó, biểu thức trở thành:
\[
\frac{8\sqrt{2}}{7\sqrt{2}} = \frac{8}{7}.
\]

Bài 3.14 toán 9 sgk KNTT trang 53

Chứng minh rằng:

a) \( \left( 1 – \sqrt{2} \right)^2 = 3 – 2\sqrt{2} \)

b) \( \left( \sqrt{3} + \sqrt{2} \right)^2 = 5 + 2\sqrt{6} \)

Giải:

a)
Ta khai triển bình phương của hiệu:
\[
\left( 1 – \sqrt{2} \right)^2 = 1^2 – 2 \times 1 \times \sqrt{2} + \left( \sqrt{2} \right)^2
\]
\[
= 1 – 2\sqrt{2} + 2 = 3 – 2\sqrt{2}.
\]
Vậy ta có điều phải chứng minh là đúng.

b)
Ta khai triển bình phương của tổng:
\[
\left( \sqrt{3} + \sqrt{2} \right)^2 = \left( \sqrt{3} \right)^2 + 2 \times \sqrt{3} \times \sqrt{2} + \left( \sqrt{2} \right)^2
\]
\[
= 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6}.
\]
Vậy ta có điều phải chứng minh là đúng.

Xem thêm: “Toán 9 Kết nối tri thức 1: Khai căn bậc hai với phép nhân…“.

Bài 3.15 toán 9 sgk KNTT trang 53

Cho căn thức \( \sqrt{x^2 – 4x + 4} \).

a) Hãy chứng tỏ rằng căn thức xác định với mọi giá trị của \(x\).
b) Rút gọn căn thức đã cho với \(x \geq 2\).
c) Chứng tỏ rằng với mọi \(x \geq 2\), biểu thức \( \sqrt{x} – \sqrt{x^2 – 4x + 4} \) có giá trị không đổi.

Giải:

a)
Ta có biểu thức dưới dấu căn là \( x^2 – 4x + 4 = (x – 2)^2 \).

Biểu thức này luôn không âm với mọi \(x\), do đó căn thức xác định với mọi \(x\).

b)
Với \( x \geq 2 \), ta có:
\[
\sqrt{x^2 – 4x + 4} = \sqrt{(x – 2)^2} = |x – 2|.
\]
Do \( x \geq 2 \), ta có \( |x – 2| = x – 2 \). Vậy:
\[
\sqrt{x^2 – 4x + 4} = x – 2.
\]

c)
Ta cần chứng minh rằng biểu thức \( \sqrt{x} – \sqrt{x^2 – 4x + 4} \) có giá trị không đổi với \( x \geq 2 \).

Thay \( \sqrt{x^2 – 4x + 4} \) bằng \( x – 2 \), ta có:
\[
\sqrt{x} – \sqrt{x^2 – 4x + 4} = \sqrt{x} – (x – 2).
\]
Xét giá trị của biểu thức:
\[
\sqrt{x} – (x – 2).
\]
Để chứng minh biểu thức này không đổi, ta có thể chứng minh biểu thức này có giá trị không thay đổi đối với mọi giá trị của \( x \geq 2 \).

Bài 3.16 toán 9 sgk KNTT trang 53

Trong Vật lí, tốc độ (m/s) của một vật đang bay được cho bởi công thức:
\[
v = \sqrt{\frac{2E}{m}},
\]
trong đó \(E\) là động năng của vật (tính bằng Joule, kí hiệu là J) và \(m\) (kg) là khối lượng của vật.

Tính tốc độ bay của một vật khi biết vật đó có khối lượng \(2,5\) kg và động năng \(281,25\) J.

Giải:

Áp dụng công thức:
\[
v = \sqrt{\frac{2E}{m}},
\]
với \(E = 281,25\) J và \(m = 2,5\) kg, ta có:
\[
v = \sqrt{\frac{2 \times 281,25}{2,5}} = \sqrt{\frac{562,5}{2,5}} = \sqrt{225}.
\]
Do đó,
\[
v = 15 \, \text{m/s}.
\]

Vậy tốc độ bay của vật là \(15\) m/s.

Tác giả:

Mai Khanh là một giáo viên có 13 năm kinh nghiệm giảng dạy tại trường THCS Chu Văn An, TP.HCM. Cô đã nhận giải thưởng "Giáo viên sáng tạo" từ UNESCO và có chứng chỉ đào tạo về phương pháp giảng dạy hiện đại từ Đại học Harvard. Với kho tàng kiến thức rộng mở của mình, cô Mai Khanh luôn truyền cảm hứng đến từng học sinh.

Bài viết liên quan

Bạn đang tìm kiếm lời giải dễ hiểu và chính xác cho bài Xe đêm trang 71 tập 2 – Kết nối tri thức? Bài viết dưới đây sẽ cung…

04/12/2024

Bạn đang tìm kiếm lời giải chi tiết và dễ hiểu cho bài Thực hành tiếng Việt trang 69 tập 2 – KNTT? Bài viết dưới đây sẽ cung cấp…

04/12/2024

Văn lớp 9 Bài TT thứ 2: Quảng bá giá trị của sách thuộc chương trình ‘Kết nối tri thức’ tập 2 giúp học sinh nhận thức rõ hơn về…

04/12/2024